422 research outputs found

    Magneto-optical properties of Co|Pt multilayer systems

    Full text link
    We are reporting, for the first time in the literature, theoretical Kerr spectra of Co|Pt multilayer systems as obtained on a first principles basis including multiple reflections and interferences from all the boundaries in-between the layers.Comment: 4 pages (LaTeX), 1 (a,b) figures (Encapsulated PostScript), J. Appl. Physics, in pres

    Layer-resolved optical conductivity of Co|Pt multilayers

    Full text link
    The complex optical conductivity tensor is calculated for the Co|Pt systems by applying a contour integration technique within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method. It is shown that the optical conductivity of the Co|Pt multilayer systems is dominated by contributions arising from the Pt cap and/or substrate layers.Comment: 7 pages (LaTeX), 2 (a,b) figures (Encapsulated PostScript), J. Magn. Magn. Materials, in pres

    Reorientation phase transitions in thin magnetic films: a review of the classical vector spin model within the mean field approach

    Full text link
    The ground state and the finite temperature phase diagrams with respect to magnetic configurations are studied systematically for thin magnetic films in terms of a classical Heisenberg model including magnetic dipole-dipole interaction and uniaxial anisotropy. Simple relations are derived for the occurrence of the various phase boundaries between the different regions of the magnetic orientations. In particular, the range of the first and second order reorientation phase transitions are determined for bi- and trilayers.Comment: 23 pages, LaTeX + 7 figures (Encapsulated PostScript), submitted to Philosophical Magazine B (Feb. 28, 2001

    Limitations of the two-media approach in calculating magneto-optical properties of layered systems

    Full text link
    It is shown that in polar geometry and normal incidence the 2x2 matrix technique - as discussed in detail in a preceeding paper [Phys. Rev. B 65, 144448 (2002)] - accounts correctly for multiple reflections and optical interferences, and reduces only in the case of a periodic sequence of identical layers to the Fresnel formula of reflectivity, which in turn is the theoretical basis of the two-media approach, widely used in the literature to compute magneto-optical Kerr spectra. As a numerical example ab-initio calculations of the optical constants for an fcc Pt semi-infinite bulk using the spin-polarized relativistic screened Korringa-Kohn-Rostoker method show very good agreement with experimental data.Comment: 16 pages (LaTeX), 4 figures (Encapsulated PostScript), appears in Phys. Rev. B 66, 1744XX (2002

    Ab-initio calculation of Kerr spectra for semi-infinite systems including multiple reflections and optical interferences

    Full text link
    Based on Luttinger's formulation the complex optical conductivity tensor is calculated within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a contour integration technique. For polar geometry and normal incidence ab-initio Kerr spectra of multilayer systems are then obtained by including via a 2x2 matrix technique all multiple reflections between layers and optical interferences in the layers. Applications to Co|Pt5 and Pt3|Co|Pt5 on the top of a semi-infinite fcc-Pt(111) bulk substrate show good qualitative agreement with the experimental spectra, but differ from those obtained by applying the commonly used two-media approach.Comment: 32 pages (LaTeX), 5 figures (Encapsulated PostScript), submitted to Phys. Rev.

    Non-collinear magnetic structures: a possible cause for current induced switching

    Full text link
    Current induced switching in Co/Cu/Co trilayers is described in terms of ab-initio determined magnetic twisting energies and corresponding sheet resistances. In viewing the twisting energy as an energy flux the characteristic time thereof is evaluated by means of the Landau-Lifshitz-Gilbert equation using ab-initio parameters. The obtained switching times are in very good agreement with available experimental data. In terms of the calculated currents, scalar quantities since a classical Ohm's law is applied, critical currents needed to switch magnetic configurations from parallel to antiparallel and vice versa can unambiguously be defined. It is found that the magnetoresistance viewed as a function of the current is essentially determined by the twisting energy as a function of the relative angle between the orientations of the magnetization in the magnetic slabs, which in turn can also explain in particular cases the fact that after having switched off the current the system remains in the switched magnetic configuration. For all ab-initio type calculations the fully relativistic Screened Korringa-Kohn-Rostoker method and the corresponding Kubo-Greenwood equation in the context of density functional theory are applied.Comment: 20 pages, 4 tables and 15 figures, submitted to PR
    corecore